Domaine : Chimie - Thématique(s) : Chimie analytique, physique et théorique STAGES COURTS

AMÉLIORER SON APPROCHE EXPÉRIMENTALE GRÂCE À L'OUTIL NUMÉRIQUE : PRINCIPES DE MODÉLISATION MOLÉCULAIRE APPLIQUÉS À L'OPTIMISATION DE PROTOCOLES EN SYNTHÈSE ORGANIQUE ET ORGANOMÉTALLIQUE

Les chercheurs ou ingénieurs amenés à optimiser des protocoles de synthèse (augmentation de la chimio-, régio- et/ou stéréo-sélectivité) vont acquérir, d'un point de vue théorique et pratique, les outils d'analyse et de prédiction de la réactivité chimique nécessaires à leur amélioration rationnelle (design in silico).

Ce stage est composé de deux modules, Principes et Applications, qui peuvent être suivis indépendamment dans la mesure où les pré-requis sont remplis. Le module 2 (Applications) donne la possibilité au stagiaire de définir son projet avec les intervenants, en fonction de ses intérêts.

① Durée de la formation : 21 heures et 14 heures

☐ Dates : Voir le calendrier ② Lieu : Laboratoire de Chimie Théorique, Campus Pierre et Marie Curie,

Paris

€ Tarif: Voir ci-dessous

Module 1: 1700€ Module 2 : 1200€

OBJECTIFS ET COMPÉTENCES VISÉES

• Module 1: Principes

Démystifier et maitriser les outils de modélisation moléculaire.

Acquérir les bases nécessaires à un dialogue constructif expérimentateur théoricien.

Analyser et interpréter de façon critique les résultats de calculs (les siens, ceux de collaborateurs, ceux de la littérature)

Module 2 : Applications

Réaliser soi-même une étude complète de sélectivité sur un processus synthétique (construction du modèle, réalisation de l'étude, interprétation, design d'un processus amélioré).

PUBLIC VISÉ

Ingénieur et chercheurs intéressés par une conception rationnelle de leurs procédés de synthèse (chimie moléculaire et catalyse homogène) par des méthodes de modélisation moléculaire.

PRÉ-REQUIS

Module 1: Niveau Ingénieur chimiste ou Master Chime (tous cursus). Aucune compétence particulière en programmation n'est requise.

Module 2 : bases de modélisation moléculaire : méthodes et interprétation.

INFORMATIONS

Catégorie de l'action de développement des compétences :

(Article L6313-1 du Code du Travail) Action de formation

Effectifs:

Modalité: Présentiel

Module 1: Min 2 pers. / Max 8 pers. Module 2: Nombre de places en fonction

des sujets, nous consulter. Documents: Supports de cours. Évaluation et validation : Attestation de fin de formation Possibilité de sessions sur-mesure

CONTACT

D 01 44 27 82 82 ☑ chimie-fc@sorbonne-universite.fr

PROGRAMME

• Module 1 - Principes: Acquisition des bases fondamentales

J1 : Principes et champs d'application des différentes méthodes de modélisation moléculaire

TP: prise en main du logiciel de modélisation

J2: Modélisation d'une réaction chimique

TP: étude d'une réaction en une étape (SN)

J3 : Modélisation du milieu réactionnel : questionnement et approches disponibles

TP: modélisations du solvant

• Module 2 – Applications : Mener sa propre étude de design in silico (réalisé en mode projet, défini en amont avec les intervenants en fonction des intérêts du stagiaire) :

J1: Construire et Confirmer son modèle réactionnel

TP: Construction du modèle, validation de méthode, préparation de l'étude.

J2 : Interprétation des résultats : possibilités et limites

TP : Analyse des calculs préparés la veille, interprétation des résultats, mise en perspective des données expérimentales.

MÉTHODES

Cours-TD, TP et projet personnel

DEBOUCHES:

Cette formation permet aux individus de sécuriser leur parcours professionnel en leur donnant les compétences nécessaires pour accompagner les entreprises dans les enjeux liés à leur secteur d'activité et s'adapter aux évolutions technologiques associées.

LES + DE LA FORMATION

- Forte composante pratique.
- La formation se découpe en deux modules : Principes et Applications.
- Il est conseillé de les suivre successivement mais ils peuvent être suivis chacun de façon séparée.
- Le module 2, propose de réaliser en deux jours un projet personnel qui peut être défini en fonction des intérets du stagiaire.
- Formation dispensée dans un laboratoire spécialisé en chimie théorique,bénéficiant d'une expertise reconnue dans le domaine de la modélisation pour la chimie de synthèse. Laboratoire unique en France.
- Calculs réalisés sur une plateforme de calculs de niveau recherche.

